Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(S)-Benzyl 2-(6-methyl-2-pyridylaminocarbonyl)pyrrolidine-1-carboxylate

Tai-Ran Kang,^a* Seik Weng Ng^b and Long He^a

^aCollege of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, People's Republic of China, and ^bDepartment of Chemistry, University of Malaya, Kuala Lumpur 50603, Malaysia Correspondence e-mail: cwnuchem@163.com

Received 18 July 2007; accepted 26 July 2007

Key indicators: single-crystal X-ray study; T = 153 K; mean σ (C–C) = 0.003 Å; R factor = 0.032; wR factor = 0.092; data-to-parameter ratio = 9.7.

The molecules of the title compound, $C_{19}H_{21}N_3O_3$, are linked by a hydrogen bond between the amide NH group and the ester substituent in the 1-position of the pyrrolidine ring. This gives rise to a helical chain that propagates along the *a* axis of the orthorhombic cell by a 2_1 screw translation.

Related literature

For benzyl (S)-2-(5-methyl-2-pyridylaminocarbonyl)pyrrolidine-2-carboxylate, see He (2006).

Experimental

Crystal data

C19H21N3O3
$M_r = 339.39$
Orthorhombic, P212121
a = 6.9065 (1) Å
b = 15.7480 (4) Å
c = 15.8380 (4) Å

V = 1722.60 (7) Å³ Z = 4Mo $K\alpha$ radiation $\mu = 0.09 \text{ mm}^-$ T = 153 (2) K $0.45 \times 0.44 \times 0.22 \text{ mm}$

Data collection

```
Rigaku R-AXIS RAPID IP
  diffractometer
Absorption correction: multi-scan
  (ABSCOR; Higashi, 1995)
  T_{\min} = 0.961, \ \tilde{T}_{\max} = 0.981
```

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.032$	
$wR(F^2) = 0.092$	
S = 1.04	
2261 reflections	
232 parameters	
8 restraints	

16810 measured reflections 2261 independent reflections 2207 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.019$

H at	oms treated by a mixture of
in	dependent and constrained
re	finement
$\Delta \rho_{\rm n}$	$hax = 0.53 \text{ e} \text{ Å}^{-3}$
$\Delta \rho_{\rm n}$	$h_{\rm in} = -0.20 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N2-H2\cdots O2^i$	0.88 (1)	2.18 (1)	3.036 (2)	163 (2)
C	. 1 . 1			

Symmetry code: (i) $x + \frac{1}{2}, -y + \frac{1}{2}, -z + 1.$

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2007).

The authors are grateful for financial support from China West Normal University (grant No. 05B021) and the University of Malaya.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IM2028).

References

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.

He, L. (2006). Acta Cryst. E62, 03947-03948.

Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.

Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.

Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Westrip, S. P. (2007). publCIF. In preparation.

supplementary materials

Acta Cryst. (2007). E63, o3847 [doi:10.1107/81600536807036689]

(S)-Benzyl 2-(6-methyl-2-pyridylaminocarbonyl)pyrrolidine-1-carboxylate

T.-R. Kang, S. W. Ng and L. He

Comment

A recent study of benzyl (*S*)-2-(5-methyl-2-pyridylaminocarbonyl)-pyrrolidine-1-carboxylate shows a hydrogen-bonded chain $[N \cdots O 2.927 (2) \text{ Å}]$ that runs along *b*-axis [11.4256 (3) Å] of the orthorhombic unit cell. In the isomeric title compound, the molecules are linked by the corresponding amido-carbonyl hydrogen bond $[N \cdots O 3.036 (2) \text{ Å}]$ into a helical chain that runs along the *a*-axis of the orthorhombic cell. The mode of propagation differs between the two, as noted from the pitch of the helix.

Experimental

The procedure for synthesizing benzyl (*S*)-2-(5-methyl-2-pyridylaminocarbonyl)-pyrrolidine-1-carboxylate (He, 2006) was used, with 6-methylpyridyl-2-amine in place of 5-methylpyridyl-2-amine. Crystals were grown from an ethanolic solution of the compound.

Refinement

The carbon-bound hydrogen atoms were placed at calculated positions (C–H 0.95 to 0.99 Å) and were inlcuded in the refinement in the riding model approximation, with U(H) set to 1.2 to 1.5 $U_{eq}(C)$. The amido hydrogen atom was located in a difference Fourier map and was refined with a distance restraint of N–H 0.88 ± 0.01 Å; its temperature factor was freely refined.

Figures

Fig. 1. Thermal ellipsoid plot of $C_{19}H_{21}N_3O_3$. Displacement ellipsoids are drawn at the 70% probability level, H atoms are drawn as spheres of arbitrary radiui.

(S)-Benzyl 2-(6-methyl-2-pyridylaminocarbonyl)pyrrolidine-1-carboxylate

Crystal data $C_{19}H_{21}N_3O_3$ $M_r = 339.39$ Orthorhombic, $P2_12_12_1$ Hall symbol: P 2ac 2ab a = 6.9065 (1) Å

 $F_{000} = 720$ $D_x = 1.309 \text{ Mg m}^{-3}$ Mo K α radiation $\lambda = 0.71073 \text{ Å}$ Cell parameters from 16166 reflections $\theta = 3.2-27.5^{\circ}$

b = 15.7480 (4) Å	$\mu = 0.09 \text{ mm}^{-1}$
c = 15.8380 (4) Å	<i>T</i> = 153 (2) K
$V = 1722.60 (7) \text{ Å}^3$	Block, colorless
Z = 4	$0.45\times0.44\times0.22~mm$

Data collection

Rigaku R-AXIS RAPID IP diffractometer	2261 independent reflections
Radiation source: rotating anode tube	2207 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.019$
T = 153(2) K	$\theta_{\text{max}} = 27.5^{\circ}$
ω scans	$\theta_{\min} = 3.2^{\circ}$
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)	$h = -8 \rightarrow 8$
$T_{\min} = 0.961, \ T_{\max} = 0.981$	$k = -20 \rightarrow 20$
16810 measured reflections	$l = -20 \rightarrow 20$

Refinement

Refinement on F^2	H atoms treated by a mixture of independent and constrained refinement
Least-squares matrix: full	$w = 1/[\sigma^2(F_o^2) + (0.0611P)^2 + 0.4025P]$ where $P = (F_o^2 + 2F_c^2)/3$
$R[F^2 > 2\sigma(F^2)] = 0.032$	$(\Delta/\sigma)_{\rm max} = 0.001$
$wR(F^2) = 0.092$	$\Delta \rho_{max} = 0.53 \text{ e} \text{ Å}^{-3}$
<i>S</i> = 1.04	$\Delta \rho_{min} = -0.20 \text{ e } \text{\AA}^{-3}$
2261 reflections	Extinction correction: SHELXL97, $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
232 parameters	Extinction coefficient: 0.033 (3)
8 restraints	Absolute structure: Friedel pairs were merged
Primary atom site location: structure-invariant direct methods	Flack parameter: 0
Secondary atom site location: difference Fourier map	Rogers parameter: ?
Hydrogen site location: inferred from neighbouring sites	

Fractional atomic coordinates and is	sotropic or equivalent isotropic	displacement parameters $(Å^2)$

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
01	0.9391 (2)	0.09533 (8)	0.58395 (7)	0.0265 (3)
O2	0.91177 (19)	0.29212 (8)	0.61477 (7)	0.0234 (3)
O3	1.00096 (19)	0.27940 (8)	0.75267 (7)	0.0226 (3)
N1	0.9295 (2)	0.09490 (8)	0.31762 (8)	0.0196 (3)
N2	1.0429 (2)	0.12574 (9)	0.44994 (8)	0.0198 (3)
H2	1.134 (3)	0.1534 (12)	0.4225 (13)	0.032 (6)*
N3	1.1779 (2)	0.21679 (9)	0.65344 (8)	0.0196 (3)
C1	0.8381 (3)	0.07319 (13)	0.17138 (10)	0.0289 (4)

H1A	0.9745	0.0672	0.1554	0.043*
H1B	0.7958	0.1317	0.1611	0.043*
H1C	0.7592	0.0342	0.1376	0.043*
C2	0.8148 (2)	0.05246 (10)	0.26361 (10)	0.0215 (3)
C3	0.6786 (3)	-0.00678 (11)	0.29092 (11)	0.0254 (4)
H3	0.6003	-0.0365	0.2515	0.030*
C4	0.6600 (3)	-0.02138 (11)	0.37685 (12)	0.0277 (4)
H4	0.5674	-0.0612	0.3969	0.033*
C5	0.7765 (3)	0.02218 (11)	0.43353 (10)	0.0245 (4)
Н5	0.7653	0.0134	0.4927	0.029*
C6	0.9107 (2)	0.07922 (9)	0.40043 (10)	0.0188 (3)
C7	1.0491 (2)	0.13158 (9)	0.53608 (9)	0.0183 (3)
C8	1.2178 (2)	0.18583 (10)	0.56818 (9)	0.0183 (3)
H8	1.2434	0.2343	0.5289	0.022*
C9	1.4007 (3)	0.13120 (11)	0.57953 (11)	0.0249 (4)
H9A	1.3667	0.0703	0.5837	0.030*
H9B	1.4907	0.1392	0.5315	0.030*
C10	1.4912 (3)	0.16248 (13)	0.66126 (11)	0.0301 (4)
H10A	1.5743	0.2127	0.6511	0.036*
H10B	1.5698	0.1174	0.6881	0.036*
C11	1.3167 (3)	0.18557 (11)	0.71607 (10)	0.0239 (4)
H11A	1.2658	0.1353	0.7463	0.029*
H11B	1.3499	0.2302	0.7576	0.029*
C12	1.0218 (2)	0.26492 (10)	0.66888 (9)	0.0181 (3)
C13	0.8416 (3)	0.33562 (11)	0.77456 (10)	0.0251 (4)
H13A	0.7232	0.3188	0.7436	0.030*
H13B	0.8739	0.3949	0.7591	0.030*
C14	0.8084 (2)	0.32899 (10)	0.86799 (10)	0.0193 (3)
C15	0.7404 (3)	0.25312 (11)	0.90256 (11)	0.0242 (3)
H15	0.7205	0.2052	0.8671	0.029*
C16	0.7017 (3)	0.24711 (14)	0.98825 (12)	0.0309 (4)
H16	0.6578	0.1950	1.0116	0.037*
C17	0.7273 (3)	0.31743 (15)	1.03973 (11)	0.0344 (5)
H17	0.6986	0.3136	1.0983	0.041*
C18	0.7942 (3)	0.39275 (13)	1.00651 (12)	0.0322 (4)
H18	0.8111	0.4408	1.0420	0.039*
C19	0.8372 (3)	0.39844 (11)	0.92059 (11)	0.0250 (3)
H19	0.8863	0.4500	0.8980	0.030*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	0.0286 (6)	0.0308 (6)	0.0200 (5)	-0.0078 (6)	0.0056 (5)	0.0008 (5)
O2	0.0228 (6)	0.0309 (6)	0.0167 (5)	0.0053 (5)	-0.0015 (5)	0.0009 (4)
O3	0.0220 (5)	0.0312 (6)	0.0145 (5)	0.0091 (5)	-0.0007 (4)	-0.0024 (4)
N1	0.0188 (6)	0.0221 (6)	0.0179 (6)	-0.0021 (6)	-0.0003 (5)	-0.0033 (5)
N2	0.0201 (7)	0.0229 (6)	0.0163 (6)	-0.0061 (5)	0.0015 (5)	0.0002 (5)
N3	0.0199 (7)	0.0260 (6)	0.0129 (5)	0.0038 (6)	-0.0018 (5)	-0.0020 (5)

supplementary materials

C1	0.0268 (9)	0.0396 (9)	0.0204 (7)	-0.0062 (8)	-0.0010 (7)	-0.0081 (7)
C2	0.0170 (7)	0.0251 (7)	0.0224 (7)	0.0008 (7)	-0.0003 (6)	-0.0068 (6)
C3	0.0204 (8)	0.0257 (7)	0.0299 (8)	-0.0041 (7)	-0.0022 (7)	-0.0079 (7)
C4	0.0224 (9)	0.0256 (8)	0.0352 (9)	-0.0076 (7)	0.0029 (7)	-0.0013 (7)
C5	0.0246 (8)	0.0258 (8)	0.0230 (7)	-0.0052 (7)	0.0016 (7)	0.0011 (7)
C6	0.0176 (7)	0.0181 (6)	0.0207 (7)	0.0001 (6)	0.0006 (6)	-0.0024 (5)
C7	0.0198 (8)	0.0178 (6)	0.0174 (7)	0.0007 (6)	0.0002 (6)	0.0009 (5)
C8	0.0197 (7)	0.0221 (7)	0.0131 (6)	-0.0003 (6)	0.0007 (6)	-0.0016 (5)
C9	0.0206 (8)	0.0313 (8)	0.0227 (7)	0.0052 (7)	0.0012 (7)	-0.0030(7)
C10	0.0258 (9)	0.0345 (9)	0.0301 (9)	0.0048 (8)	-0.0021 (8)	-0.0008 (7)
C11	0.0250 (8)	0.0313 (8)	0.0155 (7)	0.0069 (7)	-0.0044 (7)	0.0004 (6)
C12	0.0185 (7)	0.0209 (6)	0.0150 (6)	-0.0008 (6)	-0.0001 (6)	-0.0004 (5)
C13	0.0247 (8)	0.0308 (8)	0.0198 (7)	0.0110 (7)	0.0020 (7)	0.0008 (6)
C14	0.0141 (7)	0.0247 (7)	0.0189 (7)	0.0043 (6)	-0.0004 (6)	-0.0013 (6)
C15	0.0215 (8)	0.0259 (8)	0.0252 (8)	-0.0020 (7)	-0.0026 (7)	-0.0033 (6)
C16	0.0215 (8)	0.0409 (9)	0.0302 (9)	-0.0044 (8)	0.0016 (7)	0.0095 (8)
C17	0.0240 (9)	0.0612 (13)	0.0180 (8)	0.0038 (9)	0.0023 (7)	-0.0025 (8)
C18	0.0266 (9)	0.0422 (10)	0.0277 (8)	0.0050 (8)	-0.0014 (8)	-0.0162 (8)
C19	0.0212 (8)	0.0235 (7)	0.0302 (8)	0.0010 (7)	0.0009 (7)	-0.0044 (7)

Geometric parameters (Å, °)

O1—C7	1.216 (2)	C8—C9	1.539 (2)
O2—C12	1.223 (2)	С8—Н8	1.0000
O3—C12	1.3541 (18)	C9—C10	1.520 (2)
O3—C13	1.455 (2)	С9—Н9А	0.9900
N1—C6	1.341 (2)	С9—Н9В	0.9900
N1—C2	1.344 (2)	C10—C11	1.530 (2)
N2—C7	1.3682 (19)	C10—H10A	0.9900
N2—C6	1.409 (2)	C10—H10B	0.9900
N2—H2	0.880 (10)	C11—H11A	0.9900
N3—C12	1.341 (2)	C11—H11B	0.9900
N3—C8	1.4618 (18)	C13—C14	1.501 (2)
N3—C11	1.4642 (19)	C13—H13A	0.9900
C1—C2	1.505 (2)	C13—H13B	0.9900
C1—H1A	0.9800	C14—C19	1.389 (2)
C1—H1B	0.9800	C14—C15	1.396 (2)
C1—H1C	0.9800	C15—C16	1.386 (2)
C2—C3	1.393 (2)	C15—H15	0.9500
C3—C4	1.386 (2)	C16—C17	1.387 (3)
С3—Н3	0.9500	C16—H16	0.9500
C4—C5	1.387 (2)	C17—C18	1.377 (3)
C4—H4	0.9500	С17—Н17	0.9500
C5—C6	1.393 (2)	C18—C19	1.396 (2)
С5—Н5	0.9500	C18—H18	0.9500
С7—С8	1.531 (2)	С19—Н19	0.9500
C12—O3—C13	114.62 (13)	С8—С9—Н9В	110.8
C6—N1—C2	118.28 (14)	Н9А—С9—Н9В	108.9
C7—N2—C6	127.62 (14)	C9—C10—C11	103.66 (14)

C7—N2—H2	115.9 (15)	С9—С10—Н10А	111.0
C6—N2—H2	116.4 (15)	C11—C10—H10A	111.0
C12—N3—C8	120.57 (13)	C9—C10—H10B	111.0
C12—N3—C11	126.34 (13)	C11-C10-H10B	111.0
C8—N3—C11	112.99 (13)	H10A—C10—H10B	109.0
C2—C1—H1A	109.5	N3—C11—C10	102.19 (13)
C2—C1—H1B	109.5	N3—C11—H11A	111.3
H1A—C1—H1B	109.5	C10-C11-H11A	111.3
C2—C1—H1C	109.5	N3—C11—H11B	111.3
H1A—C1—H1C	109.5	C10-C11-H11B	111.3
H1B—C1—H1C	109.5	H11A—C11—H11B	109.2
N1—C2—C3	122.23 (15)	O2—C12—N3	124.75 (14)
N1—C2—C1	116.52 (15)	O2—C12—O3	124.17 (15)
C3—C2—C1	121.24 (15)	N3—C12—O3	111.08 (13)
C4—C3—C2	118.59 (16)	O3—C13—C14	107.95 (13)
С4—С3—Н3	120.7	O3—C13—H13A	110.1
С2—С3—Н3	120.7	C14—C13—H13A	110.1
C3—C4—C5	119.96 (17)	O3—C13—H13B	110.1
C3—C4—H4	120.0	C14—C13—H13B	110.1
С5—С4—Н4	120.0	H13A—C13—H13B	108.4
C4—C5—C6	117.47 (16)	C19—C14—C15	119.13 (15)
С4—С5—Н5	121.3	C19—C14—C13	120.97 (16)
С6—С5—Н5	121.3	C15—C14—C13	119.85 (15)
N1—C6—C5	123.45 (15)	C16—C15—C14	120.49 (17)
N1—C6—N2	112.70 (14)	С16—С15—Н15	119.8
C5—C6—N2	123.84 (14)	C14—C15—H15	119.8
O1—C7—N2	124.79 (15)	C15—C16—C17	119.77 (19)
O1—C7—C8	122.04 (14)	С15—С16—Н16	120.1
N2—C7—C8	113.10 (14)	С17—С16—Н16	120.1
N3—C8—C7	110.45 (13)	C18—C17—C16	120.39 (16)
N3—C8—C9	103.48 (12)	С18—С17—Н17	119.8
C7—C8—C9	110.57 (13)	С16—С17—Н17	119.8
N3—C8—H8	110.7	C17—C18—C19	119.94 (17)
С7—С8—Н8	110.7	С17—С18—Н18	120.0
С9—С8—Н8	110.7	С19—С18—Н18	120.0
C10—C9—C8	104.84 (13)	C14—C19—C18	120.25 (16)
С10—С9—Н9А	110.8	C14—C19—H19	119.9
С8—С9—Н9А	110.8	C18—C19—H19	119.9
С10—С9—Н9В	110.8		
C6—N1—C2—C3	-0.1 (2)	C7—C8—C9—C10	-139.34 (14)
C6—N1—C2—C1	178.90 (15)	C8—C9—C10—C11	34.49 (18)
N1—C2—C3—C4	0.8 (3)	C12—N3—C11—C10	-161.55 (16)
C1—C2—C3—C4	-178.13 (17)	C8—N3—C11—C10	21.96 (18)
C2—C3—C4—C5	-0.5 (3)	C9—C10—C11—N3	-33.99 (18)
C3—C4—C5—C6	-0.5 (3)	C8—N3—C12—O2	-6.1 (2)
C2—N1—C6—C5	-1.0 (2)	C11—N3—C12—O2	177.70 (16)
C2—N1—C6—N2	178.20 (14)	C8—N3—C12—O3	173.69 (14)
C4—C5—C6—N1	1.3 (3)	C11—N3—C12—O3	-2.6 (2)
C4—C5—C6—N2	-177.80 (16)	C13—O3—C12—O2	-3.9 (2)

supplementary materials

C7—N2—C6—N1	172.46 (15)	C13—O3—C12—N3	176.36 (14)
C7—N2—C6—C5	-8.4 (3)	C12—O3—C13—C14	166.87 (14)
C6—N2—C7—O1	1.0 (3)	O3—C13—C14—C19	115.82 (17)
C6—N2—C7—C8	178.08 (14)	O3-C13-C14-C15	-66.7 (2)
C12—N3—C8—C7	-59.16 (18)	C19—C14—C15—C16	0.1 (3)
C11—N3—C8—C7	117.55 (15)	C13-C14-C15-C16	-177.40 (17)
C12—N3—C8—C9	-177.53 (14)	C14—C15—C16—C17	1.2 (3)
C11—N3—C8—C9	-0.81 (18)	C15-C16-C17-C18	-1.1 (3)
O1—C7—C8—N3	-24.6 (2)	C16-C17-C18-C19	-0.2 (3)
N2—C7—C8—N3	158.28 (13)	C15-C14-C19-C18	-1.5 (3)
O1—C7—C8—C9	89.38 (19)	C13-C14-C19-C18	176.02 (17)
N2—C7—C8—C9	-87.78 (16)	C17-C18-C19-C14	1.5 (3)
N3-C8-C9-C10	-21.06 (17)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D\!\!-\!\!\mathrm{H}^{\ldots}\!A$
N2—H2···O2 ⁱ	0.88 (1)	2.18 (1)	3.036 (2)	163 (2)
Symmetry codes: (i) $x+1/2, -y+1/2, -z+1$.				

